Chapter 8 Introductory Signal Acquisition Methods

Yongquan Ye, Ph.D. Radiology, Wayne State Univ

• Previous sessions:

- Spin precession (Chap. 2&3)
- RF excitation (Chap. 3)
- Concept of T1, T2 and T2* (Chap.4)
- Signal detection (Chap.7)

Today's content

- Free Induction Decay (FID) and T2*
- Spin Echo (SE) and T2
- Inversion Recovery (IR) and T1
- Sequence diagram and Repeated scans signal

FID and T2*

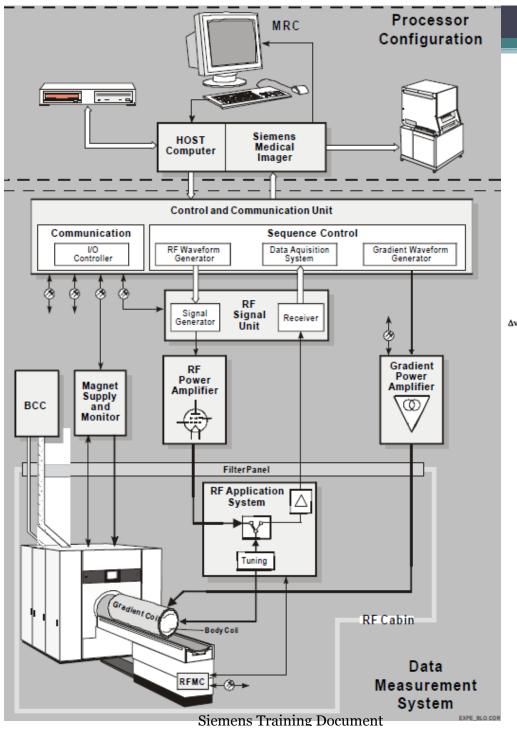
• FID signal (global signal of the sample)

$$S(t) \propto \omega_0 \int d^3r e^{-\frac{t}{T_2(\vec{r})}} \mathcal{B}_{\perp}(\vec{r}) M_{\perp}(\vec{r}, 0) e^{i((\Omega - \omega(\vec{r}))t + \phi_0(\vec{r}) - \theta_{\mathcal{B}}(\vec{r}))}$$

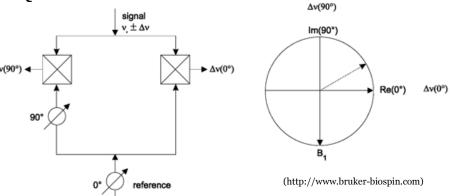
A simpler version

$$S(t) \propto \omega_0 \mathcal{B}_{\perp} M_{\perp} e^{-\frac{t}{T_2}} e^{i(\Omega - \omega_0)t} \int d^3r$$
$$= S_0 e^{-\frac{t}{T_2}} e^{i(\Omega - \omega_0)t}$$

- Simplifications:
 - Magnetic field and receive field (e.g. $\omega(\vec{r}) = \omega_0$), baseline phase terms ϕ_0 , spin density and T2 are spatially independent

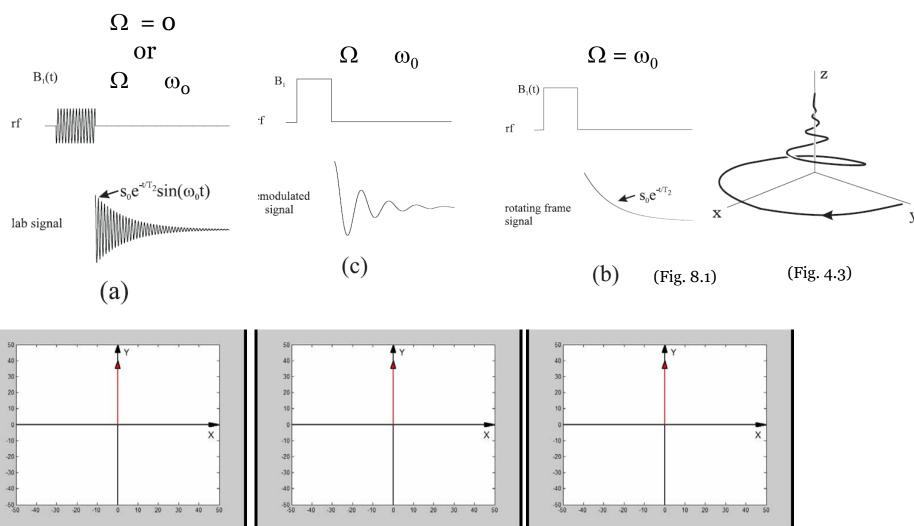


Quadrature demodulation:



FID and T2*

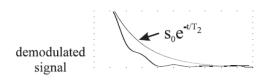
$$S(t) = S_0 e^{-t/T_2} e^{i(\Omega - \omega_0)t}$$



FID and T2*

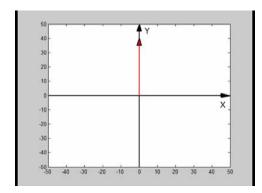
Practical issue: local & global field inhomogeneity exist

$$S(t) = S_0 \int e^{-t/T_2} e^{i(\Omega - \omega(\vec{r}))t}$$



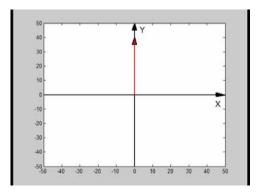
(d)

(Fig. 8.1 and Prob. 8.1)



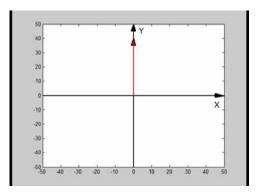
90%
$$\Omega - \omega(\vec{r}) = \text{0Hz}$$

10% $\Omega - \omega(\vec{r}) = \text{50Hz}$



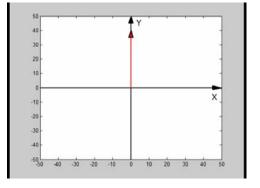
75%
$$\Omega - \omega(\vec{r}) = \text{OHz}$$

25% $\Omega - \omega(\vec{r}) \pm 5\text{OHz}$
40 spins



90%
$$\Omega - \omega(\vec{r}) = \text{0Hz}$$

5% $\Omega - \omega(\vec{r}) = \pm 5\text{0Hz}$



75%
$$\Omega - \omega(\vec{r}) = \text{OHz}$$

25% $\Omega - \omega(\vec{r}) \pm 5\text{OHz}$
40,000 spins

T2* Decay

$$\frac{1}{T_2*} = \frac{1}{T_2} + \frac{1}{T_2'}$$

Definition:

Combined external field (inhomogeneity) effects (T2') and thermodynamic effects (T2)

• T2' origins:

External: B_o field, boundaries (Prob. 8.2), partial volume

Internal: chemical shift, microscopic motion (diffusion, capillary blood)

Effective spatial scale: ~voxel size to molecular size

• Indications:

$$M_{\perp}(\vec{r},t) = M_{\perp}(\vec{r},0)e^{-\frac{t}{T_{2}*}}$$

Estimate T₂'

$$\phi(\vec{r},t) = -\gamma (B_0 + \Delta B(\vec{r}))t$$
(global, non-quantitative)

$$\sum_{sample} e^{i\phi(\vec{r},t)} \propto e^{-\frac{t}{T_{2'}}} \to 0$$

Valid only for spectrally symmetric source and when T2<<T2'

Alternative: using definition

$$\frac{1}{{T_2}'} = \frac{1}{T_2} - \frac{1}{T_2} *$$

FID sampling and repeated scans

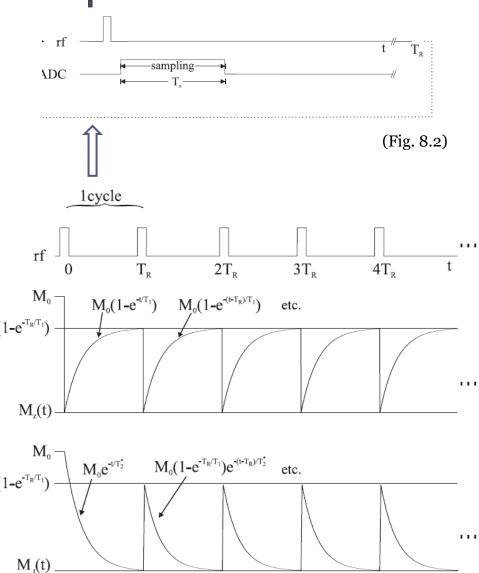
With a 90° excitation:

$$\begin{cases} M_Z(0^+) = 0 \\ M_\perp(0^+) = M_0 \end{cases}$$

$$\begin{cases} M_Z(TR^-) = M_0(1 - e^{-TR/T1}) \\ M_\perp(TR^-) = M_0e^{-TR/T_2^*} \end{cases}$$

:

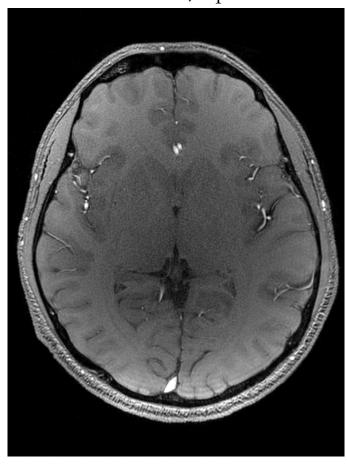
$$\begin{cases} M_Z(nTR^-) = M_0(1 - e^{-TR/T1}) \\ M_\perp(nTR^-) = M_0(1 - e^{-TR/T1})e^{-TR/T_2^*} \end{cases}$$



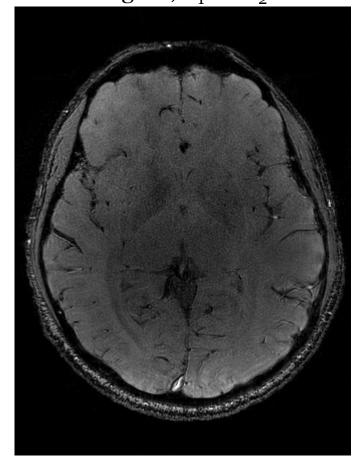
(Fig. 8.6)

FID repeated scan examples (Short TR Gradient echo)

Short TE, T₁W

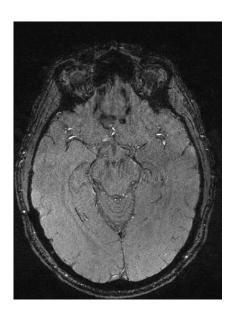


Long TE, T₁W+T₂*W

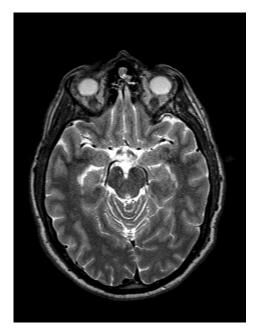


SE and T₂

- Why do we need SE?
 - Introduce T2 weightings
 - Reduce signal loss due to field inhomogeneity



GE, T1W+T2*W



SE, T2W

SE and T₂

How SE works

- 1. $\phi(\vec{r},t) = -\gamma \Delta B(\vec{r})t$, $0 < t < \tau$
- 2. $\phi(\vec{r}, \tau^+) = -\phi(\vec{r}, \tau^-) = \gamma \Delta B(\vec{r}) \tau, t = \tau$

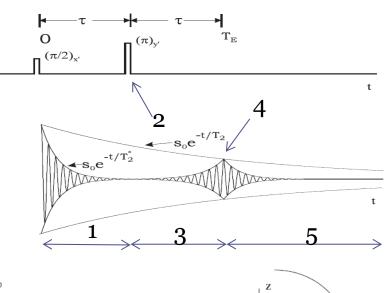
rf

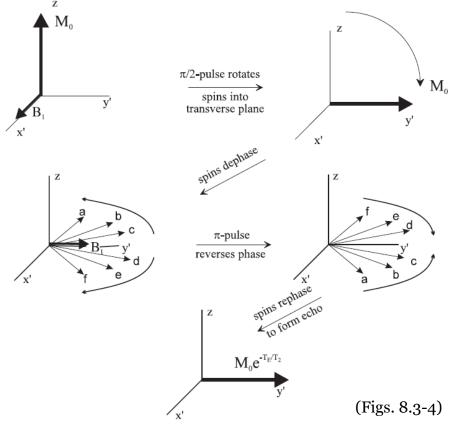
- 3. $\phi(\vec{r},t) = \gamma \Delta B(\vec{r})\tau \gamma \Delta B(\vec{r})(t-\tau),$
- 4. $\phi(\vec{r}, 2\tau) = 0, t = 2\tau \equiv TE$
- 5. $\phi(\vec{r},t) = -\gamma \Delta B(\vec{r})(t-2\tau,) \ t > 2\tau$

• Quick thoughts:

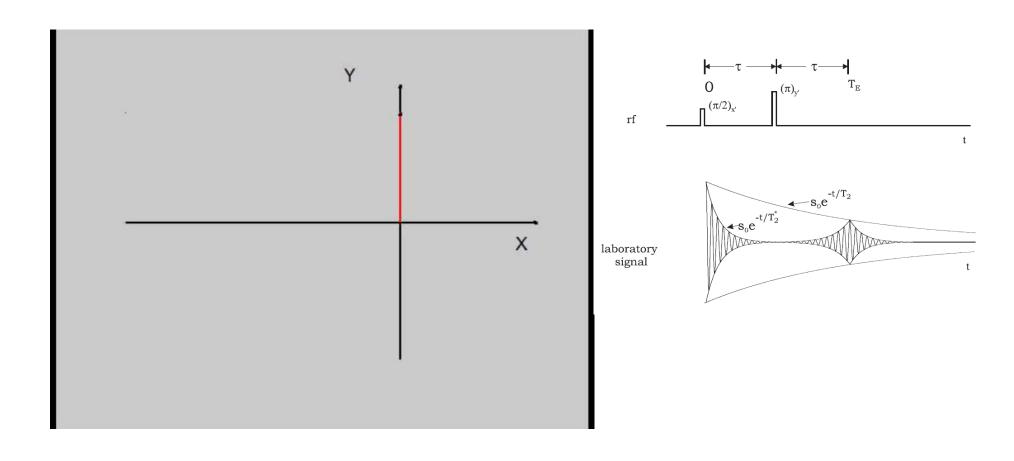
 $\tau < t < \tau$

- The effect of the phase between B_1 and M?
- Refoc flip angle other than 180°?

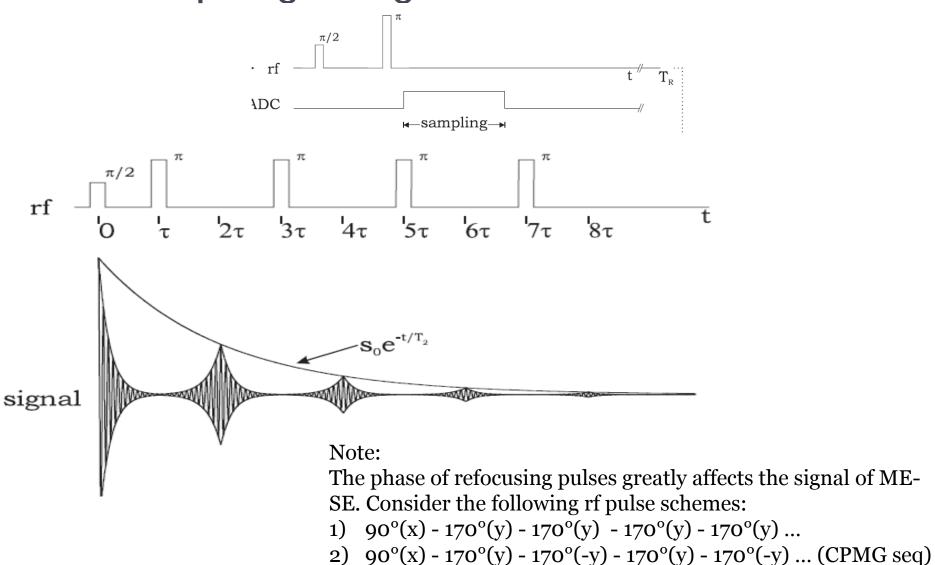




SE signal envelope



SE sampling: single-/multi-echo



Limitation of SE

- Maximal signal limited to T2 decay which is not recoverable
- T2' decay on both sides of the echo acts as low pass filter, blurring the image (Chap. 13)
- True T2 is difficult for precise quantification
 - Motion, partial volume effects, RF pulse, data acquisition, etc.
- Extra consideration for multiple spin echo acquisition
 - RF pulse phase
 - RF energy deposition
 - Multiple signal pathways
- Long scan time
- Interesting question:
 - Is the two-spin model in Prob. 8.1 has signal behavior equivalent to a spin echo?

- T1 describes signal recovery rate along B_o, i.e. M_z
- How to introduce T1 weighting into S(t)?
 A: Introduce perturbation to M_z
 (already did with repeated GE scans)

$$M_z(nTR^-) = M_0(1 - e^{-TR/T1})$$

• Instead of $\pi/2$ flip angle, a π pulse can be used to completely Invert M_z to negative, and introduce T1 weighting into signal during Recovery.

$$M_z(t) = M_z(0) + M_0(1 - e^{-t/T_1}) = M_0(1 - 2e^{-t/T_1})$$

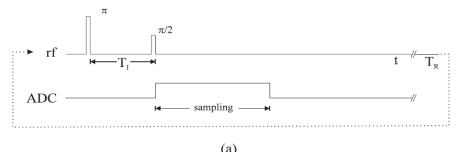
$$M_z(t) = M_0(1 - 2e^{-t/T_1})$$

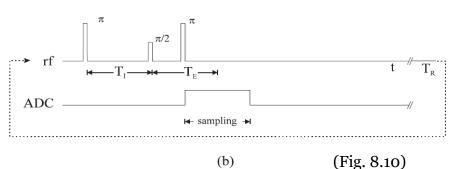
At t=TI after inversion pulse

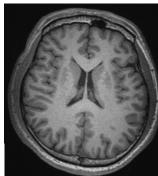
$$M_z(TI) = M_0(1 - 2e^{-TI/T1})$$

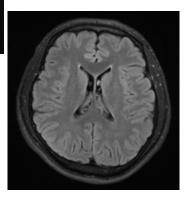
• With a $\pi/2$ excitation pulse at TI, T1 weighting can be introduced into M of the FID

$$M_{\perp}(t) = |M_{Z}(TI)|e^{-(t-TI)/T_{2}^{*}}, \qquad t > TI$$

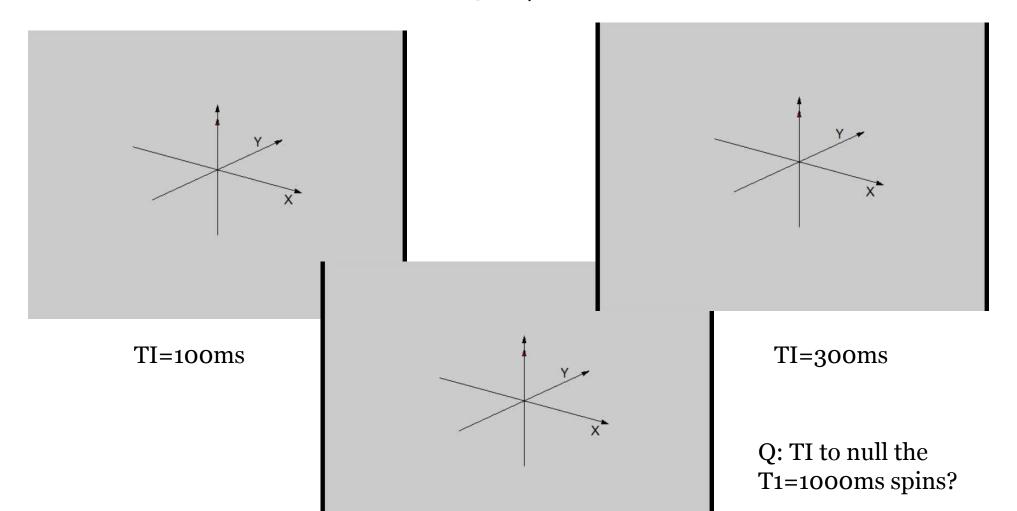








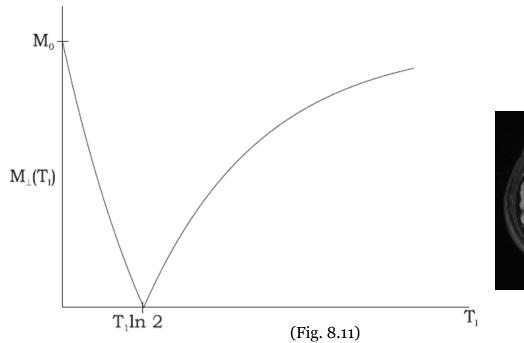
T1=300/1000ms

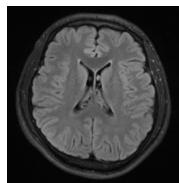


TI=208ms

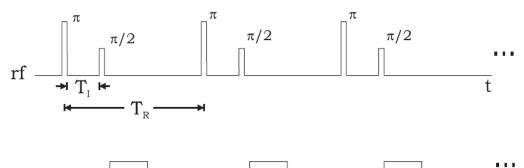
• To determine T1, simply measure the recovery curve and determine the nulling TI

$$M_0\left(1-\frac{2}{2}e^{-TI_{,T_1}^{null}}\right)=0 \rightarrow T_{I,\text{null}}=T_1\ln 2$$





Repeated IR scans



ADC —

(Fig. 8.12)

$$\begin{cases} M_Z(0^+) = 0 \\ M_\perp(0^+) = M_0 \end{cases}$$

$$\begin{cases} M_z(0^+) = 0 \\ M_\perp(0^+) = M_0 \end{cases} \begin{cases} M_z(TI^-) = M_0(1 - 2e^{-TI/T1}) \\ M_\perp(TI^-) = 0 \end{cases}$$

$$\begin{cases} M_Z(TR^-) = M_0(1 - e^{-(TR - TI)/T1}) \\ M_\perp(TR^-) = M_0|1 - 2e^{-TI/T1}|e^{-(TR - TI)/T_2^*} \end{cases}$$

$$\begin{cases} M_Z(nTR^-) = & M_0(1 - e^{-(TR - TI)/T1}) \\ M_\perp(nTR^-) = & M_0|1 + e^{-TR/T1} - 2e^{-TI/T1}|e^{-(TR - TI)/T_2^*} \end{cases}$$

Homework

• Prob. 8.1-8.5

Next Class

Chapter 9.1-9.4